Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: covidwho-2320161

RESUMEN

The recent advances in artificial intelligence (AI) and machine learning have driven the design of new expert systems and automated workflows that are able to model complex chemical and biological phenomena. In recent years, machine learning approaches have been developed and actively deployed to facilitate computational and experimental studies of protein dynamics and allosteric mechanisms. In this review, we discuss in detail new developments along two major directions of allosteric research through the lens of data-intensive biochemical approaches and AI-based computational methods. Despite considerable progress in applications of AI methods for protein structure and dynamics studies, the intersection between allosteric regulation, the emerging structural biology technologies and AI approaches remains largely unexplored, calling for the development of AI-augmented integrative structural biology. In this review, we focus on the latest remarkable progress in deep high-throughput mining and comprehensive mapping of allosteric protein landscapes and allosteric regulatory mechanisms as well as on the new developments in AI methods for prediction and characterization of allosteric binding sites on the proteome level. We also discuss new AI-augmented structural biology approaches that expand our knowledge of the universe of protein dynamics and allostery. We conclude with an outlook and highlight the importance of developing an open science infrastructure for machine learning studies of allosteric regulation and validation of computational approaches using integrative studies of allosteric mechanisms. The development of community-accessible tools that uniquely leverage the existing experimental and simulation knowledgebase to enable interrogation of the allosteric functions can provide a much-needed boost to further innovation and integration of experimental and computational technologies empowered by booming AI field.


Asunto(s)
Inteligencia Artificial , Aprendizaje Profundo , Sitio Alostérico , Macrodatos , Proteínas/química
2.
Trends Biochem Sci ; 48(4): 375-390, 2023 04.
Artículo en Inglés | MEDLINE | ID: covidwho-2287178

RESUMEN

The fundamental biological importance and complexity of allosterically regulated proteins stem from their central role in signal transduction and cellular processes. Recently, machine-learning approaches have been developed and actively deployed to facilitate theoretical and experimental studies of protein dynamics and allosteric mechanisms. In this review, we survey recent developments in applications of machine-learning methods for studies of allosteric mechanisms, prediction of allosteric effects and allostery-related physicochemical properties, and allosteric protein engineering. We also review the applications of machine-learning strategies for characterization of allosteric mechanisms and drug design targeting SARS-CoV-2. Continuous development and task-specific adaptation of machine-learning methods for protein allosteric mechanisms will have an increasingly important role in bridging a wide spectrum of data-intensive experimental and theoretical technologies.


Asunto(s)
COVID-19 , Humanos , Sitio Alostérico , Regulación Alostérica , SARS-CoV-2/metabolismo , Proteínas/química , Aprendizaje Automático
3.
J Phys Chem Lett ; 14(13): 3230-3235, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: covidwho-2280490

RESUMEN

The spread of the monkeypox virus has surged during the unchecked COVID-19 epidemic. The most crucial target is the viral envelope protein, p37. However, lacking p37's crystal structure is a significant hurdle to rapid therapeutic discovery and mechanism elucidation. Structural modeling and molecular dynamics (MD) of the enzyme with inhibitors reveal a cryptic pocket occluded in the unbound structure. For the first time, the inhibitor's dynamic flip from the active to the cryptic site enlightens p37's allosteric site, which squeezes the active site, impairing its function. A large force is needed for inhibitor dissociation from the allosteric site, ushering in its biological importance. In addition, hot spot residues identified at both locations and discovered drugs more potent than tecovirimat may enable even more robust inhibitor designs against p37 and accelerate the development of monkeypox therapies.


Asunto(s)
COVID-19 , Simulación de Dinámica Molecular , Humanos , Sitio Alostérico , Dominio Catalítico , Monkeypox virus , Unión Proteica , Proteínas del Envoltorio Viral/metabolismo
4.
Commun Biol ; 5(1): 805, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1991680

RESUMEN

SARS-CoV-2 papain-like protease (PLpro) covers multiple functions. Beside the cysteine-protease activity, facilitating cleavage of the viral polypeptide chain, PLpro has the additional and vital function of removing ubiquitin and ISG15 (Interferon-stimulated gene 15) from host-cell proteins to support coronaviruses in evading the host's innate immune responses. We identified three phenolic compounds bound to PLpro, preventing essential molecular interactions to ISG15 by screening a natural compound library. The compounds identified by X-ray screening and complexed to PLpro demonstrate clear inhibition of PLpro in a deISGylation activity assay. Two compounds exhibit distinct antiviral activity in Vero cell line assays and one inhibited a cytopathic effect in non-cytotoxic concentration ranges. In the context of increasing PLpro mutations in the evolving new variants of SARS-CoV-2, the natural compounds we identified may also reinstate the antiviral immune response processes of the host that are down-regulated in COVID-19 infections.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Sitio Alostérico , Antivirales/farmacología , Proteasas Similares a la Papaína de Coronavirus , Humanos , Papaína/metabolismo , Péptido Hidrolasas/metabolismo , SARS-CoV-2
5.
Molecules ; 27(16)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: covidwho-1987903

RESUMEN

Since its emergence in early 2019, the respiratory infectious virus, SARS-CoV-2, has ravaged the health of millions of people globally and has affected almost every sphere of life. Many efforts are being made to combat the COVID-19 pandemic's emerging and recurrent waves caused by its evolving and more infectious variants. As a result, novel and unexpected targets for SARS-CoV-2 have been considered for drug discovery. 2'-O-Methyltransferase (nsp10/nsp16) is a significant and appealing target in the SARS-CoV-2 life cycle because it protects viral RNA from the host degradative enzymes via a cap formation process. In this work, we propose prospective allosteric inhibitors that target the allosteric site, SARS-CoV-2 MTase. Four drug libraries containing ~119,483 compounds were screened against the allosteric site of SARS-CoV-2 MTase identified in our research. The identified best compounds exhibited robust molecular interactions and alloscore-score rankings with the allosteric site of SARS-CoV-2 MTase. Moreover, to further assess the dynamic stability of these compounds (CHEMBL2229121, ZINC000009464451, SPECS AK-91811684151, NCI-ID = 715319), a 100 ns molecular dynamics simulation, along with its holo-form, was performed to provide insights on the dynamic nature of these allosteric inhibitors at the allosteric site of the SARS-CoV-2 MTase. Additionally, investigations of MM-GBSA binding free energies revealed a good perspective for these allosteric inhibitor-enzyme complexes, indicating their robust antagonistic action on SARS-CoV-2 (nsp10/nsp16) methyltransferase. We conclude that these allosteric repressive agents should be further evaluated through investigational assessments in order to combat the proliferation of SARS-CoV-2.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Metiltransferasas/metabolismo , SARS-CoV-2 , Proteínas no Estructurales Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Sitio Alostérico , Humanos , Pandemias , Estudios Prospectivos
6.
Drug Des Devel Ther ; 16: 2463-2478, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1978914

RESUMEN

The current pandemic caused by the COVID-19 disease has reached everywhere in the world and has affected every aspect of our lives. As of the current data, the World Health Organization (WHO) has reported more than 300 million confirmed COVID-19 cases worldwide and more than 5 million deaths. Mpro is an enzyme that plays a key role in the life cycle of the SARS-CoV-2 virus, and it is vital for the disease progression. The Mpro enzyme seems to have several allosteric sites that can hinder the enzyme catalytic activity. Furthermore, some of these allosteric sites are located at or nearby the dimerization interface which is essential for the overall Mpro activity. In this review paper, we investigate the potential of the Mpro allosteric site to act as a drug target, especially since they interestingly appear to be resistant to mutation. The work is illustrated through three subsequent sections: First, the two main categories of Mpro allosteric sites have been explained and discussed. Second, a total of six pockets have been studied and evaluated for their druggability and cavity characteristics. Third, the experimental and computational attempts for the discovery of new allosteric inhibitors have been illustrated and discussed. To sum up, this review paper gives a detailed insight into the feasibility of developing new Mpro inhibitors to act as a potential treatment for the COVID-19 disease.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Sitio Alostérico , Antivirales/química , Antivirales/farmacología , Sitios de Unión , Proteasas 3C de Coronavirus , Humanos , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Proteínas no Estructurales Virales/metabolismo
7.
J Mol Biol ; 434(17): 167748, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1936840

RESUMEN

Inhibiting the main protease of SARS-CoV-2 is of great interest in tackling the COVID-19 pandemic caused by the virus. Most efforts have been centred on inhibiting the binding site of the enzyme. However, considering allosteric sites, distant from the active or orthosteric site, broadens the search space for drug candidates and confers the advantages of allosteric drug targeting. Here, we report the allosteric communication pathways in the main protease dimer by using two novel fully atomistic graph-theoretical methods: Bond-to-bond propensity, which has been previously successful in identifying allosteric sites in extensive benchmark data sets without a priori knowledge, and Markov transient analysis, which has previously aided in finding novel drug targets in catalytic protein families. Using statistical bootstrapping, we score the highest ranking sites against random sites at similar distances, and we identify four statistically significant putative allosteric sites as good candidates for alternative drug targeting.


Asunto(s)
Proteasas 3C de Coronavirus , Sitio Alostérico , Proteasas 3C de Coronavirus/química , Simulación del Acoplamiento Molecular , Conformación Proteica
8.
J Mol Biol ; 434(17): 167610, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1814769

RESUMEN

Drug research and development is a multidisciplinary field with its own successes. Yet, given the complexity of the process, it also faces challenges over the long development stages and even includes those that develop once a drug is marketed, i.e. drug toxicity and drug resistance. Better success can be achieved via well designed criteria in the early drug development stages. Here, we introduce the concepts of allostery and missense mutations, and argue that incorporation of these two intermittently linked biological phenomena into the early computational drug discovery stages would help to reduce the attrition risk in later stages of the process. We discuss the individual or in concert mechanisms of actions of mutations in allostery. Design of allosteric drugs is challenging compared to orthosteric drugs, yet they have been gaining popularity in recent years as alternative systems for the therapeutic regulation of proteins with an action-at-a-distance mode and non-invasive mechanisms. We propose an easy-to-apply computational allosteric drug discovery protocol which considers the mutation effect, and detail it with three case studies focusing on (1) analysis of effect of an allosteric mutation related to isoniazid drug resistance in tuberculosis; (2) identification of a cryptic pocket in the presence of an allosteric mutation of falcipain-2 as a malarial drug target; and (3) deciphering the effects of SARS-CoV-2 evolutionary mutations on a potential allosteric modulator with changes to allosteric communication paths.


Asunto(s)
Descubrimiento de Drogas , Mutación Missense , Regulación Alostérica/genética , Sitio Alostérico , Simulación por Computador , Descubrimiento de Drogas/métodos , Farmacorresistencia Bacteriana , Humanos , SARS-CoV-2/genética
9.
Nat Commun ; 13(1): 868, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: covidwho-1684025

RESUMEN

SARS-CoV-2 infection is a major global public health concern with incompletely understood pathogenesis. The SARS-CoV-2 spike (S) glycoprotein comprises a highly conserved free fatty acid binding pocket (FABP) with unknown function and evolutionary selection advantage1,2. Deciphering FABP impact on COVID-19 progression is challenged by the heterogenous nature and large molecular variability of live virus. Here we create synthetic minimal virions (MiniVs) of wild-type and mutant SARS-CoV-2 with precise molecular composition and programmable complexity by bottom-up assembly. MiniV-based systematic assessment of S free fatty acid (FFA) binding reveals that FABP functions as an allosteric regulatory site enabling adaptation of SARS-CoV-2 immunogenicity to inflammation states via binding of pro-inflammatory FFAs. This is achieved by regulation of the S open-to-close equilibrium and the exposure of both, the receptor binding domain (RBD) and the SARS-CoV-2 RGD motif that is responsible for integrin co-receptor engagement. We find that the FDA-approved drugs vitamin K and dexamethasone modulate S-based cell binding in an FABP-like manner. In inflammatory FFA environments, neutralizing immunoglobulins from human convalescent COVID-19 donors lose neutralization activity. Empowered by our MiniV technology, we suggest a conserved mechanism by which SARS-CoV-2 dynamically couples its immunogenicity to the host immune response.


Asunto(s)
COVID-19/inmunología , Ácidos Grasos/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Virión/inmunología , Células A549 , Sitio Alostérico/genética , Secuencia de Aminoácidos , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Sitios de Unión/genética , COVID-19/metabolismo , COVID-19/virología , Células Cultivadas , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Proteínas de Unión a Ácidos Grasos/inmunología , Proteínas de Unión a Ácidos Grasos/metabolismo , Ácidos Grasos/metabolismo , Humanos , Células MCF-7 , Microscopía Confocal/métodos , Unión Proteica , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Homología de Secuencia de Aminoácido , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Virión/metabolismo , Virión/ultraestructura
10.
J Chem Inf Model ; 62(3): 618-626, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: covidwho-1671473

RESUMEN

In this study, we target the main protease (Mpro) of the SARS-CoV-2 virus as it is a crucial enzyme for viral replication. Herein, we report three plausible allosteric sites on Mpro that can expand structure-based drug discovery efforts for new Mpro inhibitors. To find these sites, we used mixed-solvent molecular dynamics (MixMD) simulations, an efficient computational protocol that finds binding hotspots through mapping the surface of unbound proteins with 5% cosolvents in water. We have used normal mode analysis to support our claim of allosteric control for these sites. Further, we have performed virtual screening against the sites with 361 hits from Mpro screenings available through the National Center for Advancing Translational Sciences (NCATS). We have identified the NCATS inhibitors that bind to the remote sites better than the active site of Mpro, and we propose these molecules may be allosteric regulators of the system. After identifying our sites, new X-ray crystal structures were released that show fragment molecules in the sites we found, supporting the notion that these sites are accurate and druggable.


Asunto(s)
COVID-19 , SARS-CoV-2 , Sitio Alostérico , Antivirales , Proteasas 3C de Coronavirus , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/farmacología
11.
Molecules ; 27(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: covidwho-1580564

RESUMEN

The COVID-19 pandemic has caused millions of fatalities since 2019. Despite the availability of vaccines for this disease, new strains are causing rapid ailment and are a continuous threat to vaccine efficacy. Here, molecular docking and simulations identify strong inhibitors of the allosteric site of the SARS-CoV-2 virus RNA dependent RNA polymerase (RdRp). More than one hundred different flavonoids were docked with the SARS-CoV-2 RdRp allosteric site through computational screening. The three top hits were Naringoside, Myricetin and Aureusidin 4,6-diglucoside. Simulation analyses confirmed that they are in constant contact during the simulation time course and have strong association with the enzyme's allosteric site. Absorption, distribution, metabolism, excretion and toxicity (ADMET) data provided medicinal information of these top three hits. They had good human intestinal absorption (HIA) concentrations and were non-toxic. Due to high mutation rates in the active sites of the viral enzyme, these new allosteric site inhibitors offer opportunities to drug SARS-CoV-2 RdRp. These results provide new information for the design of novel allosteric inhibitors against SARS-CoV-2 RdRp.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Biología Computacional/métodos , ARN Polimerasa Dependiente de ARN de Coronavirus/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos , Flavonoides/farmacología , SARS-CoV-2/enzimología , Sitio Alostérico , COVID-19/virología , Dominio Catalítico , Diseño de Fármacos , Humanos , Absorción Intestinal , Simulación del Acoplamiento Molecular
12.
J Biochem Mol Toxicol ; 36(2): e22948, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: covidwho-1508784

RESUMEN

The outbreak of coronavirus disease 2019 (COVID-19) has induced a large number of deaths worldwide. Angiotensin-converting enzyme 2 (ACE2) is the entry receptor for the 2019 novel coronavirus (2019-nCoV) to infect the host cells. Therefore, ACE2 may be an important target for the prevention and treatment of COVID-19. The aim of this study was to investigate the inhibition effect of valaciclovir hydrochloride (VACV), zidovudine (ZDV), saquinavir (SQV), and efavirenz (EFV) on 2019-nCoV infection. The results of molecule docking and surface plasmon resonance showed that VACV, ZDV, SQV, and EFV could bind to ACE2 protein, with the KD value of (4.33 ± 0.09) e-8 , (6.29 ± 1.12) e-6 , (2.37 ± 0.59) e-5 , and (4.85 ± 1.57) e-5 M, respectively. But only ZDV and EFV prevent the 2019-nCoV spike pseudotyped virus to enter ACE2-HEK293T cells with an EC50 value of 4.30 ± 1.46 and 3.92 ± 1.36 µM, respectively. ZDV and EFV also have a synergistic effect on preventing entry of virus into cells. In conclusion, ZDV and EFV suppress 2019-nCoV infection of ACE2-HEK293T cells by interacting with ACE2.


Asunto(s)
Antivirales/farmacología , Peptidil-Dipeptidasa A/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Pseudotipado Viral , Sitio Alostérico , Antivirales/metabolismo , COVID-19/prevención & control , COVID-19/virología , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , Resonancia por Plasmón de Superficie , Tratamiento Farmacológico de COVID-19
13.
Angew Chem Int Ed Engl ; 60(44): 23492-23494, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1427056

RESUMEN

This article highlights recent pioneering work by Günther et al. towards the discovery of potential repurposed antiviral compounds (peptidomimetic and non-peptidic) against the SARS-CoV-2 main protease (Mpro ). The antiviral activity of the most potent drugs is discussed along with their binding mode to Mpro as observed through X-ray crystallographic screening.


Asunto(s)
Antivirales/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Reposicionamiento de Medicamentos , Inhibidores de Proteasas/farmacología , SARS-CoV-2/enzimología , Sitio Alostérico , Animales , Antivirales/química , Chlorocebus aethiops , Cristalografía por Rayos X , Estructura Molecular , Inhibidores de Proteasas/química , Células Vero
14.
J Phys Chem Lett ; 12(26): 6218-6226, 2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1387122

RESUMEN

Following our previous work ( Chem. Sci. 2021, 12, 4889-4907), we study the structural dynamics of the SARS-CoV-2 Main Protease dimerization interface (apo dimer) by means of microsecond adaptive sampling molecular dynamics simulations (50 µs) using the AMOEBA polarizable force field (PFF). This interface is structured by a complex H-bond network that is stable only at physiological pH. Structural correlations analysis between its residues and the catalytic site confirms the presence of a buried allosteric site. However, noticeable differences in allosteric connectivity are observed between PFFs and non-PFFs. Interfacial polarizable water molecules are shown to appear at the heart of this discrepancy because they are connected to the global interface H-bond network and able to adapt their dipole moment (and dynamics) to their diverse local physicochemical microenvironments. The water-interface many-body interactions appear to drive the interface volume fluctuations and to therefore mediate the allosteric interactions with the catalytic cavity.


Asunto(s)
Simulación de Dinámica Molecular , SARS-CoV-2/metabolismo , Proteínas de la Matriz Viral/química , Agua/química , Sitio Alostérico , COVID-19/patología , COVID-19/virología , Dominio Catalítico , Dimerización , Humanos , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , SARS-CoV-2/aislamiento & purificación , Proteínas de la Matriz Viral/metabolismo
15.
J Am Chem Soc ; 143(30): 11349-11360, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1316702

RESUMEN

The SARS-CoV-2 coronavirus is an enveloped, positive-sense single-stranded RNA virus that is responsible for the COVID-19 pandemic. The spike is a class I viral fusion glycoprotein that extends from the viral surface and is responsible for viral entry into the host cell and is the primary target of neutralizing antibodies. The receptor binding domain (RBD) of the spike samples multiple conformations in a compromise between evading immune recognition and searching for the host-cell surface receptor. Using atomistic simulations of the glycosylated wild-type spike in the closed and 1-up RBD conformations, we map the free energy landscape for RBD opening and identify interactions in an allosteric pocket that influence RBD dynamics. The results provide an explanation for experimental observation of increased antibody binding for a clinical variant with a substitution in this pocket. Our results also suggest the possibility of allosteric targeting of the RBD equilibrium to favor open states via binding of small molecules to the hinge pocket. In addition to potential value as experimental probes to quantify RBD conformational heterogeneity, small molecules that modulate the RBD equilibrium could help explore the relationship between RBD opening and S1 shedding.


Asunto(s)
SARS-CoV-2/química , Glicoproteína de la Espiga del Coronavirus/química , Sitio Alostérico , Simulación de Dinámica Molecular , Dominios Proteicos , Termodinámica
16.
Antiviral Res ; 190: 105075, 2021 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1290345

RESUMEN

The emerging SARS-CoV-2 infection is the cause of the global COVID-19 pandemic. To date, there are limited therapeutic options available to fight this disease. Here we examined the inhibitory abilities of two broad-spectrum antiviral natural products chebulagic acid (CHLA) and punicalagin (PUG) against SARS-CoV-2 viral replication. Both CHLA and PUG reduced virus-induced plaque formation in Vero-E6 monolayer at noncytotoxic concentrations, by targeting the enzymatic activity of viral 3-chymotrypsin-like cysteine protease (3CLpro) as allosteric regulators. Our study demonstrates the potential use of CHLA and PUG as novel COVID-19 therapies.


Asunto(s)
Antivirales/farmacología , Benzopiranos/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Glucósidos/farmacología , Taninos Hidrolizables/farmacología , SARS-CoV-2/efectos de los fármacos , Sitio Alostérico , Animales , Antivirales/química , Benzopiranos/química , COVID-19/virología , Chlorocebus aethiops , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , Descubrimiento de Drogas , Glucósidos/química , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , SARS-CoV-2/metabolismo , Células Vero , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
17.
Proteins ; 89(11): 1425-1441, 2021 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1281247

RESUMEN

The novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still has serious negative effects on health, social life, and economics. Recently, vaccines from various companies have been urgently approved to control SARS-CoV-2 infections. However, any specific antiviral drug has not been confirmed so far for regular treatment. An important target is the main protease (Mpro ), which plays a major role in replication of the virus. In this study, Gaussian and residue network models are employed to reveal two distinct potential allosteric sites on Mpro that can be evaluated as drug targets besides the active site. Then, Food and Drug Administration (FDA)-approved drugs are docked to three distinct sites with flexible docking using AutoDock Vina to identify potential drug candidates. Fourteen best molecule hits for the active site of Mpro are determined. Six of these also exhibit high docking scores for the potential allosteric regions. Full-atom molecular dynamics simulations with MM-GBSA method indicate that compounds docked to active and potential allosteric sites form stable interactions with high binding free energy (∆Gbind ) values. ∆Gbind values reach -52.06 kcal/mol for the active site, -51.08 kcal/mol for the potential allosteric site 1, and - 42.93 kcal/mol for the potential allosteric site 2. Energy decomposition calculations per residue elucidate key binding residues stabilizing the ligands that can further serve to design pharmacophores. This systematic and efficient computational analysis successfully determines ivermectine, diosmin, and selinexor currently subjected to clinical trials, and further proposes bromocriptine, elbasvir as Mpro inhibitor candidates to be evaluated against SARS-CoV-2 infections.


Asunto(s)
Antivirales/metabolismo , Benzofuranos/química , Proteasas 3C de Coronavirus/metabolismo , Reposicionamiento de Medicamentos/métodos , Imidazoles/química , Sitio Alostérico , Antivirales/química , Antivirales/farmacología , Benzofuranos/metabolismo , Benzofuranos/farmacología , Sitios de Unión , Bromocriptina/química , Bromocriptina/metabolismo , Bromocriptina/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Diosmina/química , Diosmina/metabolismo , Hidrazinas/química , Hidrazinas/metabolismo , Hidrazinas/farmacología , Imidazoles/metabolismo , Imidazoles/farmacología , Ivermectina/química , Ivermectina/metabolismo , Ivermectina/farmacología , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Triazoles/química , Triazoles/metabolismo , Triazoles/farmacología , Estados Unidos , United States Food and Drug Administration
18.
Molecules ; 26(9)2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1238919

RESUMEN

The CB1 cannabinoid receptor (CB1R) contains one of the longest N termini among class A G protein-coupled receptors. Mutagenesis studies suggest that the allosteric binding site of cannabidiol (CBD) involves residues from the N terminal domain. In order to study the allosteric binding of CBD to CB1R we modeled the whole N-terminus of this receptor using the replica exchange molecular dynamics with solute tempering (REST2) approach. Then, the obtained structures of CB1R with the N terminus were used for ligand docking. A natural cannabinoid receptor agonist, Δ9-THC, was docked to the orthosteric site and a negative allosteric modulator, CBD, to the allosteric site positioned between extracellular ends of helices TM1 and TM2. The molecular dynamics simulations were then performed for CB1R with ligands: (i) CBD together with THC, and (ii) THC-only. Analyses of the differences in the residue-residue interaction patterns between those two cases allowed us to elucidate the allosteric network responsible for the modulation of the CB1R by CBD. In addition, we identified the changes in the orthosteric binding mode of Δ9-THC, as well as the changes in its binding energy, caused by the CBD allosteric binding. We have also found that the presence of a complete N-terminal domain is essential for a stable binding of CBD in the allosteric site of CB1R as well as for the allosteric-orthosteric coupling mechanism.


Asunto(s)
Cannabidiol/metabolismo , Receptor Cannabinoide CB1/metabolismo , Regulación Alostérica/fisiología , Sitio Alostérico , Animales , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica , Estructura Secundaria de Proteína , Receptor Cannabinoide CB1/química
19.
J Phys Chem B ; 125(15): 3763-3780, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1180209

RESUMEN

While the pervasiveness of allostery in proteins is commonly accepted, we further show the generic nature of allosteric mechanisms by analyzing here transmembrane ion-channel viroporin 3a and RNA-dependent RNA polymerase (RdRp) from SARS-CoV-2 along with metabolic enzymes isocitrate dehydrogenase 1 (IDH1) and fumarate hydratase (FH) implicated in cancers. Using the previously developed structure-based statistical mechanical model of allostery (SBSMMA), we share our experience in analyzing the allosteric signaling, predicting latent allosteric sites, inducing and tuning targeted allosteric response, and exploring the allosteric effects of mutations. This, yet incomplete list of phenomenology, forms a complex and unique allosteric territory of protein function, which should be thoroughly explored. We propose a generic computational framework, which not only allows one to obtain a comprehensive allosteric control over proteins but also provides an opportunity to approach the fragment-based design of allosteric effectors and drug candidates. The advantages of allosteric drugs over traditional orthosteric compounds, complemented by the emerging role of the allosteric effects of mutations in the expansion of the cancer mutational landscape and in the increased mutability of viral proteins, leave no choice besides further extensive studies of allosteric mechanisms and their biomedical implications.


Asunto(s)
COVID-19 , Regulación Alostérica , Sitio Alostérico , Humanos , Modelos Moleculares , SARS-CoV-2
20.
Science ; 372(6542): 642-646, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1166347

RESUMEN

The coronavirus disease (COVID-19) caused by SARS-CoV-2 is creating tremendous human suffering. To date, no effective drug is available to directly treat the disease. In a search for a drug against COVID-19, we have performed a high-throughput x-ray crystallographic screen of two repurposing drug libraries against the SARS-CoV-2 main protease (Mpro), which is essential for viral replication. In contrast to commonly applied x-ray fragment screening experiments with molecules of low complexity, our screen tested already-approved drugs and drugs in clinical trials. From the three-dimensional protein structures, we identified 37 compounds that bind to Mpro In subsequent cell-based viral reduction assays, one peptidomimetic and six nonpeptidic compounds showed antiviral activity at nontoxic concentrations. We identified two allosteric binding sites representing attractive targets for drug development against SARS-CoV-2.


Asunto(s)
Sitio Alostérico , Antivirales/química , Dominio Catalítico , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Desarrollo de Medicamentos , Inhibidores de Proteasas/química , SARS-CoV-2/enzimología , Animales , Antivirales/farmacología , Chlorocebus aethiops , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , Células Vero , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA